Oxidation of methanol to formaldehyde on supported vanadium oxide catalysts compared to gas phase molecules.

نویسندگان

  • Jens Döbler
  • Marc Pritzsche
  • Joachim Sauer
چکیده

The oxidation of methanol to formaldehyde on silica supported vanadium oxide is studied by density functional theory. For isolated vanadium oxide species silsesquioxane-type models are adopted. The first step is dissociative adsorption of methanol yielding CH3O(O=)V(O-)2 surface complexes. This makes the O=V(OCH3)3 molecule a suited model system. The rate-limiting oxidation step involves hydrogen transfer from the methoxy group to the vanadyl oxygen atom. The transition state is biradicaloid and needs to be treated by the broken-symmetry approach. The activation energies for O=V(OCH3)3 and the silsesquioxane surface model are 147 and 154 kJ/mol. In addition, the (O=V(OCH3)3)(2) dimer (a model for polymeric vanadium oxide species) and the O=V(OCH3)3(*+) radical cation are studied. For the latter the barrier is only 80 kJ/mol, indicating a strong effect of the charge on the energy profile of the reaction and questioning the significance of gas-phase cluster studies for understanding the activity of supported oxide catalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Oxidation of Methanol over Highly Dispersed Vanadia Supported on Silica SBA-15

The partial oxidation of methanol to formaldehyde was studied over highly dispersed vanadia supported on mesoporous silica SBA-15 (VOx/SBA-15). VOx/SBA-15 catalysts were prepared by a novel grafting/ion-exchange method and characterized using UV-VISand Raman spectroscopy. The resulting surface vanadium oxide species (0 – 2.3 V/nm), grafted on the inner pores of the SBA-15 silica matrix, consist...

متن کامل

Propane oxidative dehydrogenation over vanadium oxide nanostructures supported on porous graphene prepared by hydrothermal method

In this study at first, in laboratory, three types of vanadium oxide were produced by using porous graphene and amine framework in hydrothermal method nanostructures such as: vanadium oxide - octadecyl amine - graphene, vanadium oxide - dodecyl amine - graphene and vanadium oxide – aniline - graphene (V-ODA-G، V-DDA-G، V-A-G). Then their structures and functions in propane dehydrogenation react...

متن کامل

CH3OH oxidation over well-defined supported V2O5/Al2O3 catalysts: Influence of vanadium oxide loading and surface vanadium–oxygen functionalities

A series of supported V2O5/Al2O3 catalysts were synthesized by incipient wetness impregnation with vanadium isopropoxide in isopropanol solutions and subsequent calcination. The vanadium surface density was varied from 0.3 to 11.4 V atoms/nm2 spanning the sub-monolayer and above-monolayer regions. The resulting supported vanadium oxide catalysts were physically characterized with in situ Raman ...

متن کامل

Characterization of the Synthesis and Reactivity Behavior of Nanostructured Vanadia Model Catalysts using XPS and Vibrational Spectroscopy

Nanostructured vanadia model catalysts, i.e. highly dispersed vanadium oxide supported on mesoporous silica SBA-15 (VOx/SBA-15), were prepared. The mechanism for the synthesis of VOx/SBA-15 was elucidated by detailed characterization of the individual synthesis steps using XPS and vibrational spectrocopy. The resulting surface vanadium oxide species (0 – 2.3 V/nm), grafted on the inner pores of...

متن کامل

Direct oxidation of benzene to phenol in liquid phase by H2O2 over vanadium catalyst supported on highly ordered nanoporous silica

Vanadium supported on highly ordered nanoporous silica (VOx-LUS-1) was synthesized and characterized by XRD, Nitrogen adsorption‑desorption isotherms and UV-visible spectrophotometer. Direct oxidation of benzene to phenol in liquid phase by H2O2 peroxide were examined by using various solvents (methanol, acetone, acetic acid, acetonitryl). The maximum yield (25%) and selectivity (73%) of the ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 127 31  شماره 

صفحات  -

تاریخ انتشار 2005